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Branching Random Walks

A natural model that describe the evolution of a population of
particles where spatial motion is present.

Definition:

◾ Time 0, one initial particle ∅ located at 0;

◾ Time 1, ∅ is replaced by N∅ new particles i of generation 1,
each with location Si = Li,1 ≤ i ≤ N ;

◾ Time n, each particle u of generation n(∣u∣ = n) is replaced by
Nu new particles ui with location Sui = Su +Lui(1 ≤ Nu).

Nu: independent copies of N ;
Lu: independent copis of L.
N and L random variables taking values in N and E resp.
Here E may be taken as Rd or Zd.
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Question

Denote by Zn(⋅) the counting measure of particles of generation n:
for B ⊂ R,

Zn(B) = ∑
u∈Tn

1B(Su).

Question (Harris 1963)
Central limit theorems for appropriately normalised Zn(⋅)?

T. E. Harris, The theory of branching processes, Die Grundlehren der
Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin, 1963.
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History of CLT for BRW

Since Harris first proposed his conjecture on the question of central
limit theorems for a branching random walk, the topic has been
widely studied in various forms.

N. Kaplan and S. Asmussen, Branching random walks. II, Stochastic
Processes Appl. 4 (1976), no. 1, 15–31.

Biggins J D. The central limit theorem for the supercritical branching
random walk, and related results. Stoch Process Appl, 34(1990): 255–274.
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Overview of this Lecture

1. Asymptotic expansion in LLT for SBRW

2. Asymptotic expansion in LLT for symmetric irreducible BRW

3. Sketch of proofs

Asymptotic expansion for SIBRW Zhi-Qiang GAO 9



Simple branching random walk

The reproduction is governed by a supercritical Galton-Watson
process and the migration of particles by a simple random walk in
Zd.

All step size Lu connected with the particle u are independent
copies of L with the law

P(L = ej) = P(L = −ej) =
1

2d
, j = 1,2,⋯, d,

where ej(1 ≤ j ≤ d) are the orthogonal unit vectors in Zd.
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Notation

Define

m = EN, Wn =
Zn(Zd)
mn

.

The following facts are well known(Athreya and Ney 1972):

◾ Wn is a martingale and there exists

W = lim
n→∞Wn;

◾ If m > 1,EN lnN <∞, then W is non-degenerate, EW = 1

and W > 0 on the non-extinction set {Zn →∞}.

Denote by ⟨⋅, ⋅⟩ the inner product in Rd and ∥ ⋅ ∥ the norm therein,
i.e. for x = (x1,⋯, xd) ∈ Rd and y = (y1,⋯, yd) ∈ Rd,

⟨x, y⟩ = x1y1 + x2y2 +⋯ + xdyd, ∥x∥ =
√
x21 + x22 +⋯ + x2d.
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For the simple branching random walk,
Révész (1994) considered the local limit theorem and initiated the
study of the convergence speed in local limit theorems .
Specially, Révész gave a conjecture on the exact rate of the
convergence speed for the simple branching random walk, which was
proved by Chen (2001, AAP).

X. Chen, Exact convergence rates for the distribution of particles in
branching random walks, Ann. Appl. Probab. 11 (2001), no. 4, 1242–1262.

P. Révész, Random walks of infinitely many particles, World Scientific
Publishing Co. Inc., River Edge, NJ, 1994.
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Local limit theorem for SBRW

Revesz (1994)[P.76 Theorem 4.8] :

Theorem (LLT for d-SBRW)
Assume P(N ≥ 1) = 1, m > 1 and EN2 <∞. For each
z = (z1, z2,⋯, zd) ∈ Zd,

1

2
(2πn

d
)
d/2 Zn(z)

mn
Ð→W a.s., (1)

as n→∞ with n ≡ z1 + z2 +⋯ + zd (mod 2).

P. Révész, Random walks of infinitely many particles, World Scientific
Publishing Co. Inc., River Edge, NJ, 1994.

Asymptotic expansion for SIBRW Zhi-Qiang GAO 16



Two martingales

Révész gave a conjecture on the exact rate of the convergence
speed for the simple branching random walk, and Chen
demonstrated the strengthened version of the conjecture.

To this end, Chen introduced two important martingales:

N1,n =
1

mn ∑
u∈Tn

Su and N2,n =
1

mn ∑
u∈Tn

[∥Su∥2 − n]. (2)

Under the condition EN2 <∞, he proved their convergence.
The limits V1 ∈ Rd and V2 ∈ R are given by

Vj = lim
n→∞Nj,n(j = 1,2).

X. Chen, Exact convergence rates for the distribution of particles in
branching random walks, Ann. Appl. Probab. 11 (2001), no. 4, 1242–1262.
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Convergence rate in LLT for SBRW

Theorem (Chen 2001 AAP)
Suppose that EN2 <∞. Then for each
x = (x1, x2,⋯, xd) ∈ Zd, as n→∞ provided that
n ≡ x1 + x2 +⋯ + xd (mod 2),

n

d
[1

2
(2πn

d
)
d/2Zn(x)

mn
−W exp{−d∣∣x∣∣

2

2n
}]ÐÐ→

a.s.
−1

2
V2 + ⟨x,V1⟩.

A factor was missing in the rate function.
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Generalization by G.

Theorem (G. 2017 SPA)
Assume m > 1 and EN(lnN)1+λ <∞ for λ > 4(d+ 3). Then
for each x = (x1, x2, . . . , xd) ∈ Zd, provided that
n ≡ x1 + x2 +⋯ + xd (mod 2),

n

d
[1

2
(2πn

d
)
d/2Zn(x)

mn
−W exp{ − d∣∣x∣∣

2

2n
}]

nÐ→∞ÐÐÐÐ→
a.s.

−1

2
V2 + ⟨x,V1⟩−

1

4
W .

Zhi-Qiang Gao, Exact convergence rate of the local limit theorem for
branching random walks on the integer lattice, Stoch. Process. Appl. 127
(2017), no. 4, 1282 – 1296.
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First order expansion in LLT

Theorem (G. 2017 SPA)
Assume m > 1 and EN(lnN)1+λ <∞ for λ > 4(d+ 3). Then
for each z = (z1, z2, . . . , zd) ∈ Zd, as n→∞ with
n ≡ z1 + z2 +⋯ + zd (mod 2), a.s.

1

mn
Zn(z) = 2( d

2πn
)
d/2

[W + d
n
F1(z)] + o(

1

n1+d/2
), (3)

where

F1(z) = ( − ∥z∥2

2
− 1

4
)W + ⟨z,V1⟩ −

1

2
V2. (4)
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Question
Asymptotic expansions of Zn(z)?

Z.-Q. Gao, A second order asymptotic expansion in the local limit theorem
for a simple branching random walk in Zd, Stoch. Process. Appl. 128
(2018), no. 12, 4000–4017.
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Some martingales

Consider the following martingales

N4,n = 1

mn ∑
u∈Tn

(∥Su∥4 − (2 + 4

d
)n∥Su∥2 + (1 + 2

d
)n2 + 2

d
n);

N3,n = 1

mn ∑
u∈Tn

(∥Su∥2Su − (1 + 2

d
)nSu);

Nz
2,n = 1

mn ∑
u∈Tn

( ⟨z, Su⟩2 −
n

d
∥z∥2).

These martingales converge. The quantities Vz2 ,V2,V4 ∈ R and
V1,V3 ∈ Rd are defined by

Vj = lim
n→∞Nj,n j = 1,2,3,4; Vz2 = lim

n→∞N
z
2,n.

Their convergence rates are important ingredients in the studies.
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Second order expansion in LLT

Theorem ( G. 2018 SPA)
Assume m > 1 and EN(lnN)1+λ <∞ for some λ > 6(d + 5).
Then for each z = (z1, z2, . . . , zd) ∈ Zd, as n→∞ with
n ≡ z1 + z2 +⋯ + zd (mod 2),

1

mn
Zn(z) = 2( d

2πn
)
d/2

[W+ d
n
F1(z)+

d2

n2
F2(z)]+o(

1

n2+d/2
),

(5)
where F1(z) is defined by (8) and

F2(z) = (1

8
∥z∥4 + 1

8
(1 + 4

d
)∥z∥2 − 1

32
+ d

48
+ 1

24d
)W−

(1

4
+ 1

d
+ 1

2
∥z∥2) ⟨z,V1⟩+(

1

4
∥z∥2 + 1

8
+ 1

2d
)V2+

1

2
Vz
2−

1

2
⟨z,V3⟩+

1

8
V4.
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Symmetric irreducible BRW

We extend the result for SBRW to the case where the migration
mechanism is governed by a finite range symmetric irreducible
random walk on Zd.
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A symmetric irreducible random walk

The step size L is a random variable with the probability law

P(L = 0) = ζ0, P(L = ±res) =
1

2
ζs,r, 1 ≤ s ≤ d,1 ≤ r ≤ ts, (6)

where each ts (1 ≤ s ≤ d) is a positive integer, ζ0 ∈ [0,1),
ζs,r ∈ [0,1), and

ζs,ts > 0, ζ0 +
d

∑
s=1

ts

∑
r=1

ζs,r = 1.
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Assume that the law (6) of L satisfies

gcd{r ∶ ζr,s > 0} = 1, s = 1,2,⋯, d, (7)

where gcd denotes the greatest common divisor.
This assumption implies that

V = {res ∶ ζs,r > 0,1 ≤ r ≤ ts, s = 1,2,⋯, d}

is a generating set of Zd, which means that

∀y ∈ Zd, ∃ {kr,s} ⊂ Z, s.t. y = ∑
res∈V

kr,sres.

Moreover, the random walk Sn with such increment distribution L
must be irreducible (meaning that each point in Zd can be reached
with positive probability Lawler& Limic(2010) ).

G. F. Lawler and V. Limic, Random walk: a modern introduction,
Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge
University Press, Cambridge, 2010.
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Two cases

Under the hypothesis (7) for L, there are two possible cases:

(Ha) there exists one s such that either the set {r ∶ ζs,r > 0}
contains at least one odd integer and one even, or the set
{r ∶ ζs,r > 0} only contains odd integers and ζ0 > 0;

(Hb) ζ0 = 0 and for each 1 ≤ s ≤ d, {r ∶ ζs,r > 0} only contains odd
integers.
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Aperiodic case and Bipartite case

Denote by Ad the set of all probability distributions L with the law
(6) satisfying (7) and (Ha).
When L ∈ Ad, the random walk with increment distribution L is
aperiodic , which means that each point on Zd can be reached
after n steps with positive probability for all n sufficiently large.

Denote by Bd the set of all probability distributions L with the law
(6) satisfying (7) and (Hb).
For L ∈ Bd, the associated random walk is bipartite , that means
the random walks starting from a given point x0 return to x0 only
after an even number of steps. In this case, Zd is divided into two
disjoint sets Zo and Ze, such that the walk starting form the origin
reaches the states set Zo in an odd number of steps and reaches Ze
in an even number of steps.
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Some notations

For k ∈ N, set

ζs(k) =
ts

∑
r=1

ζs,rr
k, 1 ≤ s ≤ d.

Denote by Γk = diag(ζ1(k),⋯, ζd(k)) the diagonal matrix with
diagonal entries ζ1(k),⋯, ζd(k).
It is easy to see that

det Γk =
d

∏
s=1

ζs(k), tr(Γ−1k ) =
d

∑
r=1

(ζr(k))
−1
,

where detM is the determinant of a d × d matrix M , M−1 is its
inverse, and tr(M) is its trace.
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Some martingales

The random variables V1,V2,V3 ∈ Rd and Vz2 ,V4 ∈ R are defined by :

Vj
a.s.ÔÔ lim

n→∞Nj,n j = 1,2,3,4; Vz2
a.s.ÔÔ lim

n→∞N
z
2,n,

N1,n = 1

mn ∑
u∈Tn

Su,

N2,n = 1

mn ∑
u∈Tn

( ⟨Su,e1⟩2 − nζ1(2), ⟨Su,e2⟩2 − nζ2(2),⋯, ⟨Su,ed⟩2 − nζd(2)),

Nz
2,n = 1

mn ∑
u∈Tn

[⟨Su,Γ
−1
2 z⟩2 − n ⟨Γ−12 z, z⟩] ,

N3,n = 1

mn ∑
u∈Tn

[⟨Su,Γ
−1
2 Su⟩Su − (d + 2)nSu] ,

N4,n = 1

mn ∑
u∈Tn

[ ⟨Su,Γ
−1
2 Su⟩

2 − (4 + 2d)n ⟨Su,Γ
−1
2 Su⟩ + d(d + 2)(n2 + n)

− tr(Γ4Γ−22 )n].
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Theorem (G. 2021 MPRF)
Assume that m > 1, N ≥ 1 a.s., EN(lnN)1+λ <∞ for some
λ > 3(d + 6) and L obeys the law (6). Then for each
z = (z1, z2, . . . , zd) ∈ Zd, as n→∞,
(I) in the case L ∈ Ad, a.s.

1

mn
Zn(z) =

(2πn)−d/2√
det Γ2

[W+ 1

n
F1(z)+

1

n2
F2(z)]+

1

n2+d/2
o(1),

(II) in the case L ∈ Bd, provided that
n ≡ z1 + z2 +⋯ + zd (mod 2), a.s.

1

mn
Zn(z) =

2(2πn)−d/2√
det Γ2

[W+ 1

n
F1(z)+

1

n2
F2(z)]+

1

n2+d/2
o(1),

Gao Z.Q., A second order expansion in the local limit theorem for a
branching system of symmetric irreducible random walks, Markov processes
and related fileds,Markov Process. Related Fields, (27)2021, 439-466.
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where

F1(z) = (τd −
1

2
⟨z,Γ−12 z⟩ )W + ⟨V1,Γ−12 z⟩ − 1

2
⟨V2,Γ−12 1⟩ , (8)

τd =
1

8
tr(Γ4Γ−22 ) − 1

8
d(d + 2), (9)

F2(z) = (1

8
⟨Γ−12 z, z⟩2 − ⟨Λdz, z⟩ + χd)W + ⟨V1, (2Λd −

1

2
⟨z,Γ−12 z⟩Γ−12 )z⟩

+ ⟨V2, (
1

4
⟨z,Γ−12 z⟩Γ−12 −Λd)1⟩ +

1

2
Vz
2 −

1

2
⟨V3,Γ−12 z⟩ + 1

8
V4,

(10)

Λd =
1

16
(tr(Γ4Γ−22 ) − (d + 2)(d + 4))Γ−12 + 1

4
Γ4Γ−32 , (11)

χd = −
1

64
(d + 2)(d + 4)tr(Γ4Γ−22 ) + 1

12
tr(Γ2

4Γ−42 ) + 1

128
(tr(Γ4Γ−22 ) )

2

− 1

48
tr(Γ6Γ−32 ) + 1

384
d(d + 2)(d + 4)(3d + 2). (12)
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Ideas of the proofs

◾ The key decomposition

◾ Borel-Cantelli Lemma,Truncation methods, Moment
Inequalities for sums of independent random variables.

◾ A second order expansions in the local limit theorem for a finite
range symmetric random walk.
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From the additivity property of the branching process, it follows that

Zn(z) = ∑
u∈Tkn

∑
v∈Tn−kn(u)

1{Suv=z}, (13)

and

EDkn

⎛
⎝ ∑
v∈Tn−kn(u)

1{Suv=z}
⎞
⎠
=mn−knP(S̃n−kn = z − y)∣

y=Su

.

Then we have the following decomposition:

Zn(z)
mn

= 1

mkn
∑

u∈Tkn

⎛
⎝
∑v∈Tn−kn(u) 1{Suv=z}

mn−kn
− P(S̃n−kn = z − y)∣

y=Su

⎞
⎠

+ 1

mkn
∑

u∈Tkn

P(S̃n−kn = z − y)∣
y=Su

=∶ D1,n +D2,n. (14)
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Lemma 1
n2+

d
2D1,n

n→∞ÐÐÐ→ 0 a.s. (15)

Lemma 2 As n→∞, a.s.
(I) when L ∈ Ad,

D2,n =
(2πn)−d/2√

det Γ2

[W + 1

n
F1(z) +

1

n2
F2(z)] +

1

n2+d/2
o(1); (16)

(II) when L ∈ Bd, provided n ≡ z1 + z2 +⋯ + zd (mod 2),

D2,n =
2(2πn)−d/2√

det Γ2

[W + 1

n
F1(z) +

1

n2
F2(z)] +

1

n2+d/2
o(1), (17)

where F1(z) and F2(z) are defined by (8) and (10) respectively.
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The developed methods can be used to obtain asymptotic
expansions of orders 3, 4, 5, etc., but we have not yet found a
simple and unified method.
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———————–

Thank you!
———————–

Zhiqiang Gao
Beijing Normal University
Email: gaozq@bnu.edu.cn
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